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It is known that the response of a cylindrical acoustic resonator to excitation by an 
oscillating piston can contain shock waves if the detuning is sufficiently small. 
However, the response of a spherical annular resonator is continuous, with an 
amplitude that depends on the detuning in the same way as does a Duffing equation. 
This paper discusses the response in resonators that deviate from being cylindrical and 
shows that, in general, the detuning range in which shocks are possible decreases as the 
geometrical imperfection increases. 

1. Introduction 
The modern theory of nonlinear effects in one-dimensional gas oscillations was 

initiated by Chester (1964), who derived an ordinary differential equation for the 
periodic response near resonance of a cylindrical organ pipe. In the absence of 
dissipation, this model described the genesis of shock waves as the detuning (i.e. the 
difference between the natural and forcing frequencies) was progressively decreased, 
and it predicted a sharp cut-off above which no shock waves were present. It has since 
been the basis for many generalizations, in particular to the case of open-ended pipes, 
and to include damping and dispersion effects (Chester 1981). 

More recently Chester (199 1) has considered spherically symmetric oscillations in a 
sphere and shown that the effect of nonlinearity on the periodic response is quite 
different, being the same as that of a nonlinear spring, in that the response takes the 
form of a shock-free single mode whose amplitude satisfies a cubic equation in which 
the detuning appears as a coefficient, exactly as in Duffing’s equation. The same 
response is found for waves in the space between concentric spheres as long as their 
separation is sufficiently large compared to the forcing amplitude (Peake 1993). This 
immediately poses the question of how this ‘ single-mode’ response tends to the 
‘infinite-number of modes’ response of the organ pipe when the annulus becomes 
thinner. As mentioned by Keller (1977), the excitation, via nonlinearity, of an infinite 
number of modes is crucially dependent on the linear response having an infinite 
number of commensurate natural frequencies, as in the case of the organ pipe; for the 
spherical case the spectrum is non-commensurate and hence has a single mode 
response. The principle concern of this paper is the way in which the removal of this 
degeneracy of the spectrum by increasing the geometric imperfection governs the 
response of an undamped acoustic resonator. 

Degenerate spectra can also be removed by invoking the shallow-water analogy and 
by introducing the dispersive effects inherent in surface gravity waves on shallow water. 
This scenario was considered first by Chester (1968) and later by Ockendon, Ockendon 
& Johnson (1986), and a higher-order version of Chester’s original equation (see also 
Chester & Bones 1968) was analysed to show that when any dispersive effects are 
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introduced, no matter how small, the response is always shock free; however, the 
response comprises an infinite number of branches lying closer and closer to each other 
as the dispersion is progressively decreased, which presumably allows the possibility of 
chaotic responses. Conversely, as the dispersion is increased, fewer and fewer modes 
are found in any given detuning band near the fundamental and eventually a single- 
mode response emerges (again with a Duffing-like structure) (Moiseyev 1958). This is 
quite unlike the progressive increase of dissipative effects introduced by Chester (1968) 
and Keller (1976~)  to model boundary layers on the walls of the organ pipe which only 
partially ‘disperse’ the shock response when they are small. There, once the viscosity 
is larger than a critical value, the response is smooth and eventually attains a ‘single 
mode’ response when the viscosity is large enough (Keller 1976~) .  

The aim of this paper is to try to present a simple scenario for geometrical variations. 
To minimize the distraction caused by excessive algebraic complications we begin by 
manipulating the equations of nearly unidirectional gas dynamics in a tube into a form 
(2.12) where the relevant asymptotic expansion can be carried out as economically as 
possible. The model we use is equivalent to the established quasi-one-dimensional 
equations (see, for instance, Lighthill 1978, Section 2.13) used by Keller (1977), Chester 
(1 993) and Ellermeier (1 993) but the derivation carried out in 9 2 for a two-dimensional 
tube quantifies the geometrical variations that are allowable if this model is to be used. 
In $3 these expansions are then performed in terms of a parameter e characterizing the 
small forcing amplitude. The dimensionless detuning must be of O($) if it is to interact 
with nonlinearity to produce an interesting response. The geometric variations can 
enter into the asymptotics at any one of three levels, and, in crude terms, we will find 
the following. 

(i) For geometric variations much smaller than d, the response is governed by 
Chester’s (1964) ordinary differential equation. 

(ii) For geometric variations of O(@), the response is described by an integro- 
differential equation for the waveform. This equation can still support shock waves 
when the integral term introduced by the area variations is small enough but, beyond 
a critical size, a smooth response is predicted except for resonators of special shape. 

(iii) For geometric variations much larger than ei, the response is more difficult to 
elucidate but we suggest that shock waves are only ever present for very special area 
variations. 

Hence our conclusion will be that, in general, shocks can only occur in the response 
when either the linearized spectrum contains an infinite numbe: of commensurate 
frequencies or the amplitude of the geometric imperfection is O(@) or less. Also, the 
‘less commensurate’ is the spectrum or the larger the geometric imperfection, the more 
likely we are to see a single-mode response. Thus as far as shock waves are concerned, 
the effects of geometry can be likened to those of detuning or boundary-layer damping: 
in most cases there is a critical ‘cut-off’ value of the imperfection above which the 
response is smooth. However, there do exist classes of resonators for which the 
response contains shocks even for large imperfections. 

We note that our work should have implications for weakly nonlinear free 
oscillations of gas in imperfect resonators in the same way that the results of Keller & 
Ting (1966) can be derived from those of Chester (1964) by letting the response 
amplitude tend to infinity. We will consider this briefly in the conclusion. 

We now set up our model under the assumption that the resonator is two- 
dimensional. This is done purely for ease of exposition, our model (2.12), (2.13) being 
valid for nearly cylindrical resonators of arbitrary cross-section. 
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2. The model 
Beginning with purely two-dimensional flow in a nearly rectangular resonator, we 

seek the 2n/w time-periodic response of the following dimensional equation (see 
Ockendon & Tayler 1983, Ch. 4) for the velocity potential $: 

where the speed of sound 

a = {a: - (7- 1) (+t +f lv+l2)>>; (2.2) 
and we are assuming that any shocks that are generated are so weak that entropy 
changes across them can be neglected. This incurs an error of O(IVq5[/a,)3, and we 
will consider the implications of this constraint in the conclusion. Assuming symmetry 
about the x-axis, the boundary conditions are 

q5$ = 0 at x=O, 

$x = losinwt at x = nL-lcosot, 
$ y = O  at y = O ;  

(2.3) I 
and q5v=2ah’(i)$x h on y = h ,  

where the resonator length xL, breadth h, and slope ah,/L specify the geometry, and 
1, w specify the amplitude and frequencies of the driving mechanism. Note that we have 
assumed that area variations are on the lengthscale of the tube. Non-dimensionalizing 
time with w-l, x with L, y with h,, a with a, and $ with ILw, and writing 

e = l /L,  d = (Lw/a,)’- 1 
we obtain 

(2.5) 

with $ , = O  at x=O, $$=sint  at x=n:-ecost, (2.6) 

(2.7) 
ah2 

$u = 0 on y =  0, & =-$h’(x)$% on y =  l+ah(x), 

and 2~-periodicity in time. 
The dimensionless parameters are a and h,/L which characterize the geometry and 

which are assumed to be < O(l), e which is the small forcing amplitude, and d which 
measures the detuning of the forcing frequency from the fundamental frequency of the 
rectangle. It is easily seen that when e = a = 0, the amplitude of the response is of 
O(8-l) as S-t 0. The detuning regime of greatest interest is where the nonlinear, forcing 
and detuning effects are comparable, and, as shown in Chester (1964), this happens 
when h = 8e-t = O( 1) as e + 0. This comes about because the quadratic nonlinearity 
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can only affect the lowest-order response when $ - O(c-:) and hence we immediately 
scale @ = e - 4 ~  to give 

- @,, + - Qtt = €5 A@,, + 2QX QXt  + (y - 1) Qt Q X X  'i L2 

plus smaller terms, with 

(2.8 b) 
G , = O  on X = O ,  ~ , = & s i n t  on x = x + o ( ~ ) ,  

@ , = O  on y = O ,  @, = c ~ g h ' ( x ) @ ~  on y =  l+wh(x) .  L2 

If we are away from resonance we expect to be able to find the linear response in the 
form of a perturbation about a one-dimensional solution as long as either a or h,/L 
is small and we now attempt to quantify the quasi-one-dimensional approximation 
more precisely. Since the y-variation is imposed by boundary condition (2.8b) we can 
write 

where @dy = 0. 

(2.9a) 

(2.9 b) 

The boundary condition at x = n implies that we can only obtain a quasi-one- 
dimensional solution correct to O(d)  if 

ghi /La 4 ei (2.10) 

and then the end conditions will be 6, = 0 at x = 0 and 6z = d sin t at x = n. Equation 
(2.8) becomes 

with $,=h'(x)  @x+crs@z on y =  1+ah,  J Y = O  on y=O.  (2.11b) 

When we integrate (2.11 a) across the resonator from y = 0 to y = 1 + ah, and use 
(2.1 1 b), we find that 

i- h 2 A )  

((1 + ah) 6Jz - (1 + ah) 6tt = 

€;(A( 1 + gh) $tt + 2( 1 + ch)  Fx 6zt + (y - 1) &(( 1 + ah) 6x)x) (2.12) 
is correct to O(&) as long as (2.10) holds. We can therefore work with this quasi-one- 
dimensional model which will satisfy (2.12) subject to 

6z(~, t )  = 0, $%(ny t )  = .&sin t. (2.13) 

In summary we have shown that we can use (2.12) to consider 0(1) area variations 



Geometrical efects in resonant gas oscillations 205 

’T 

FIGURE 1. Possible geometries: (a) ‘thick’ resonator with ul< $, h,/L = O(1); 
(b) ‘thin’ resonator with CT = 1 ,  ht/L2 6 €3. 

for a ‘thin’ tube (hi/L2 < &), but we can only consider o(&) variations in the area of 
a ‘thick’ tube for which h:/L2 = O(1) (figure 1). Also we note that exactly the same 
analysis is possible for nearly cylindrical resonators of arbitrary cross-section defined 
by F((y/h,, z/h,, c~h(x/L))  = 0, where h i ( l +  oh(x/L)) is the area of the cross-section 
and again we find that (2.12) is valid whenever uh:/L2 4 &. 

We will now analyse the solution of (2.12) for different values of (T. We start with 
(T = O(&), when the effect of the geometric variation and the nonlinearity are 
comparable and we will then increase (T in an attempt to describe the transition from 
the shock regime of Chester (1964), which corresponds to (T = 0, to the single-mode 
response which is expected when (T = O(1). 

3. Weak geometric effects: the analysis of (2.12) for (T = O($) 
We write n = K&, where K < O( l), and expanding the solution of (2.12) in the form 

- t )  +& qqx, t )  + . .. (3.1) 
gives - $ott = 0 with t$oz = 0 at x = 0, K (3.2) 
and Am - 4 , t t  = @ott + V o z  4ozt + (r - 1) 4 o t  4ozz - K@4ozt (3.3 a) 
with $JO, t )  = 0, $lZ(Z, 0 = sin t, $1(x, t> = $I@, t + 2n). (3.3b) 
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FIGURE 2. Solutions of (3.7): -, IAl > A,; ----, Ihl < A,. 

Solving (3.2) gives q5, = f ( [ ) + f ( $  where ( = t +x and 7 = t - x  and f has period 
2n, and then satisfies 

4A5, = - h ( f ( , 9  +fYr))  -(7+ 1) Cf‘(t).(a+f’(r>f(r)) 
- (7 - 3) ( f ( t ) f ( r )  +f ’ (r>f (E))  + Kh’ ( (6 -  r ) / 2 )  cf‘(Q -f’(r)>. (3.4) 

Hence, since (3.3 b) implies that 

the solvability condition for is that At) should satisfy 

(3 - 6) 27c K.l 1 
A .  + (7 + 1)ff” +-sin t = - (h’(7) - h’(7c - 7))f’(t  + 27) d7, 

7c 

and we choose f to have zero mean over a period. 
This equation was derived by Keller (1977) and more recently by Ellermeier (1993), 

who has shown that it also applies to a uniform tube containing an initially stratified 
density profile. When K = 0, (3.6) reduces to Chester’s equation 

(3.7) 
1 hf”+(y+l)ff”+-sint= 0 
7c 

which can be solved exactly. The solution is summarized in figure 2 and the 
corresponding response diagram is shown in figure 4(4. When IAl 2 A, = 4[(y+ l ) /n3] f ,  
there is a continuous solution, but for Ih( < A, the periodicity condition can only be 
satisfied by introducing a jump discontinuity at t = t* = 2sin-l(h/hC). This jump is 
defined uniquely if we insist that the shock to which it corresponds is compressive. The 
physical quantities all satisfy the RankineHugoniot weak shock conditions across the 
discontinuity which travels with speed a, up and down the tube and is reflected without 
change of strength at the ends x = 0 , ~ .  
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one continuous solution 

two continuous solutions 

three continuous solutions 

0 only shock solutions exist 

FIGURE 3. Sketch of solutions of (3.8) in K-A space. 

We now consider the effect of the integral term in (3.6). Chester (1964) showed that 
the effect of viscous boundary layers resulted in an extra term similar in form to the 
right-hand side of (3.6) but with the expression h’(7) - h’(n - 7) replaced by a function 
which is not odd about 7 = $r. The crucial distinction between the two effects is 
apparent when we repeatedly integrate the right-hand side of (3.6) by parts. We see that 
we only generate euen derivatives off and hence our area variations are inevitably 
dispersive ; the kernel engendered by the boundary layer leads to odd derivatives off 
and hence is dissipative. 

It can be seen immediately that (3.6) reduces to (3.7) if h’(x) is constant and also 
whenever h’(x) = h’(7c - x). In order to understand the response in a non-trivial case we 
start by discussing a special case for which (3.6) reduces to an ordinary differential 
equation. This occurs when h’ = 2x and (3.6) becomes 

This equation can be studied both asymptotically, for small and large K, and 
numerically and the results are summarized in figures 3 and 4. In figure 3, the shaded 
areas of the (A ,  K)-plane indicate values for which continuous 2n-periodic solutions 
exist. Only values of K > 0 are shown since replacing K, h and f ( t )  by their negative 
values leads to exactly the same problem. In the unshaded regions it is necessary to 
introduce a shock or shocks to get a solution for f that satisfies the periodicity 
condition. The corresponding response curves for the various values of K are sketched 
in figure 4 where the shock regime is indicated by broken lines. This figure uses 



208 

?\, 
', i. 

i, 
a. ' 

2 

FIGURE 

H. and J.  R. Ockendon, M .  R.  Peake and W. Chester 

(4 A max f'- min f 
\ 
\ 

// 
---\ 

/ 

I 

\ 'Y Shocks 

I 

max 7- min f '  

1 max f'-minf' 

, 
1 

3; (c )  K = 10. 



Geometrical eflects in resonant gas oscillations 209 

information obtained from numerical solutions to show how the solution evolves from 
that of (3.7) when K = 0 into truncated Duffing-like response curves as K increases. As 
K increases and the response curves ‘turn over’, there are values of h for which two 
possible smooth solutions coexist with a shock solution and eventually there are also 
values for which three possible smooth solutions coexist as shown in figure 3. It can 
clearly be seen that the number of ‘resonant branches’ increases with K and the range 
of h for which no continuous solutions exist decreases with K .  

As K + co there are Duffing-like superharmonic ‘ resonances ’ of frequency N where 
A x - K I N ,  and, away from these values, f x (sin t ) / n ( ~ + h ) .  We now sketch the 
asymptotic analysis near the first ‘resonance’ at A = - K.  Writing h = - K +  A, K-; and 
f =  K S ~  equation (3.8) is 

Now writing f= f ,  + K-$f i  + K - $ f 2  + . . . 
we find 
and f ,  = :(y+1)A2sin2t, 

f ,  = A sin t 

so that 

and f ,  is periodic only if A satisfies the equation 

which gives rise to a response of the type sketched in figure 4(c). On the large- 
amplitude branches, A M -+A2(y + l)’, and their structure as A + co can be investigated 
further by writing h = - ~ a  andf= ~ f t o  obtain 

1 
a .  +f- (y + 1 ) p P  = sin t. 

7CK 

Expanding f =& + 1 / K %  + . . . and 01. = a,, + ~ - ~ a ~  + . . . now leads to an autonomous 
equation forf, with an undetermined phase. The phase plane for& is sketched in figure 
5 and, since it can be shown that the periodic orbits have periods lying between 6 4  and 
2xab,, solutions of period 2n are only possible for 1 5 a, d in2. The integrability 
condition for the equation for determines two possible phases corresponding to 
the two large-amplitude branches in figure 4(c). It can also be inferred that these 
two branches are separated in amplitude by O( 1/~’)  and that they terminate 
when a z in2 a , / ~ ,  where a, = 1.61 5.. . . Numerical work indicates that solutions 
containing shocks where& is discontinuous are possible on the dotted curves in figure 

A similar analysis can be perfoyed for A N - K / N ,  for N > 1 ; the magnitude off 
in the ‘Duffing-like’ region is O ( K - ~ )  when N = 2 and the amplitude at the end of the 
branches is K / N ~  as shown in figure 4(c) (Can & Askar 1990 and Peake 1993). No work 
has been done on the stability of these solutions. 

Other geometries can be considered since, whenever h’(x) is a polynomial of degree 
m, the right-hand side of (3.6) can be repeatedly integrated by parts to arrive at a 
differential equation of degree 2[(m- 1)/2] + 2 for the function whose 2[(m - 1)/2]th 
derivative is$ The highest-order derivatives come from the terms on the left-hand side 
of (3.6) and we therefore still expect that shocks will be possible when Ihl and I K I  are 
sufficiently small. 

4(c). 
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FIGURE 5 .  Phase plane for A,&. 

Keller (1977) used a Fourier series expansion of h’(x) andf’(x) to study (3.6). In 
particular for h’(x) = sin2x, he showed that the solution was very similar to the 
solution of (3.7) and in this case solutions contain shocks for h between the values 

More recently Chester (1993) has extended this work by considering 
h(x) = A, cos 2~ + A ,  cos 4~ 

and has obtained results very similar to those shown in figures? and 4. 
The key to understanding the response of (2.12) when v = O(@) lay in the derivation 

of equations such as (3.6) and (3.7) but this method is not available when v is O(1). We 
therefore now reconsider the case v = O(&) under the assumptions that we could not 
solve the equation for #,, explicitly. We note that an alternative representation of the 
solution of (3.2) is as a linear combination of the eigenfunctions 

{cosnx(a,cosnt+b, sinnt)),,,, 
which are complete in a suitable function space, and then treat (3.3 a) by the Fredholm 
Alternative. This procedure has general applicability to the case when the operator in 
(3.2) does not have constant coefficients. We now fix ideas by considering the problem 
of solving 

(3.9 a) 

subject to the boundary conditions 
$ lSZ - $ l t t  = R(x, 

$lJO, t) = 0, $I,(% t) = sin t, $&, t )  = $,(& t+  2x1. (3.9b) 

Using the Fredholm Alternative on (3.9) leads to the unconventional infinite set of 

1 cos nx(a, cos nt  + b, sin nt) R(x, t) dx dt = - nb, a,, 

orthogonality conditions 

(3.10) 
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e+ 

FIGURE 6. Contour for the integral in (3.13). 

for any constants a,, b, and for n = 0,1,2, . . . . In order to retrieve (3.6) from these 
conditions we note first that (3.10) implies that IFe R(x, t )  cos nx cos n( t - 0) dx dt = - x sin 86,, (3.11) 

for any 8. Also, from the completeness of the relevant Sturm-Liouville problem, 

(3.12) 1 "  -+ C COS~ZXCOS nT = $T [6(x- T )  + 6(x+ 7'- 2x)] 
2 It-1 

for 0 < x < x, 0 < T < 2x. Now summing (3.11) over n and using (3.12) yields 

R(x,t)dt = ~ R ( t - 0 , t ) d t + ~ z n R ( 8 + 2 n - r y t ) d t  = -2sin8, (3.13) 

where T is the curve consisting of the characteristics x = t -8  and x = 8+2n-t  in 
0 < x < x as shown in figure 6. The result (3.13) is identical to (3.5) which was obtained 
by direct integration along the characteristics. Thus replacing R by the right-hand side 
of ( 3 . 3 ~ )  immediately leads to (3.6) with t replaced by 8. Conversely, it can be shown 
using Fourier series that (3.13) is equivalent to satisfying the conditions (3.10). 

With this background we can now consider the more difficult parameter range where 

I, 83.n 

0- 4 Q. 

4. Strong geometric effects; the analysis of (2.12) when d + Q 

4.1. &4 cr4 1 
In this region the geometric effects dominate the nonlinearity and the forcing which 
necessitates a more complicated expansion procedure than was used in $3. The 
situation that can arise now is illustrated by considering the case Q = &/3 where 
/3 = 0(1), which means that we are assuming that hi/L2 e O(d). We proceed as before, 
writing $= q50+~$51+&2+ ... in (2.12) and deriving a sequence of problems for 
q50, #1, q5zy . . . . Equation (3.2) still holds for q50 but now and #z satisfy 

A x x  - A t t  = - Ph'(x) #ox 
with dl, = 0 at x = 0 , x  and 
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FIGURE 7. Frustrum of spherical annulus. 

If we again write 4, = f ( t - x ) + f ( t + x ) ,  we see immediately from (3.6) that (4.1) is 
only integrable if 

((w(7t - 7 )  - h’(T))f(t  -k 27) d7 = 0, (4.34 

or, equivalently l h ’ ( T ) ( f ‘ ( t - 2 ~ ) - l ( i + 2 ~ ) ) d 7  = 0. (4.3 b) 

This leads to two possibilities; either h’(x) is even about x = and (4.3a) holds 
identically or elsefhas to satisfy certain constraints which we will discuss shortly. In 
either case, we can proceed by finding 

co 

41 = ,8 r f ( t  - x + 27) (h(x - q)  - h(q)) dq + C. (P, cos nt + Q, sin nt) cos nx, (4.4) 
0 n=1 

where P, and Q, are arbitrary and then the integrability condition for (4.2) implies that 
f ( t )  must satisfy 

47c 
1 

A .  + (y + 1)f’f” +-sin t = + 27) (H(q) -H(x - q)) dq 7r 

m 
-f C. ny,(P, cos nt + Q, sin nt), (4.5) 

n n=1 

where 

and 

H(q) = I-’ h’(q + 7 )  h’(7) d7 - 2h’(q) h(q) 

y, = 1 h’(x) cos nx sin nx dx. 

When h’(x) is even about x = in, all the yn are zero and so (4.5) is of exactly the same 
form as (3.6) which was discussed in the previous section. This case is exemplified by a 
resonator consisting of a frustum of a slender cone cut off by two spheres of radius R 
and R + LK oscillated near a resonant frequency with amplitude EL on one sphere 
(figure 7). If the distance from the centre of the spheres is R(l +Lx/R),  the cross- 
sectional area of the tube will be A,(1 +Lx/R)’ ,  and if L / R  < 1 we can therefore 
identify L / R  with u and 2 x + a x 2  with h(x).  Since h’(x) is an even function in (0,n) to 
order cry the response when CT = O($) is unaffected by the varying cross-section. 
However, when u = d/3 we need to write h = h, + &h1 with h, = 2x and h, = px2,  and 
then using the above analysis we are led to equation (4.5) with H(7) replaced by 
H,(q) + (2//3) hi($. Then the right-hand side reduces to - 2p”f(t) and so the equation 
forfis identical to (3.8) with K replaced by -2pL. Thus we see that for this problem 
the change from shock waves to a single-mode response occurs when L / R  = O(&). 
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For more general h we can use the Fredholm Alternative approach, noting that 
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m 
1 

$,, = 2 (a, cos nt + b, sin nt) cos nx 
n=l 

and that the integrability condition for (4.1) implies that 

a,y,=b,y,=O, n =  1,2,..., (4.6) 
and these conditions (4.6) are equivalent to condition (4.3). Consideration of the left- 
hand side of (2.12) now shows that the eigenfrequencies are 

so that yn is a measure of the non-commensurability of the nth natural frequency of 
the linear system with the forcing frequency. We now consider the situation when some 
or all of the Fourier coefficients y ,  are non-zero. For some of our discussion it will be 
helpful to refer back to the response in figure 4 for large K ;  there the area variation, 
although of a smaller order of magnitude than that considered here, is such that the 
yn are all non-zero. 

The sensitivity of the dependence of a response to y, can be seen by considering cases 
where yn are non-zero for small values of n. 

(4 Y1* 0 
In this case the area variation has shifted w1 by O(&) and so, within the detuning 

region we have selected, there is no resonant amplification. We find that $,, = 0 is a 
solution regardless of the values of yi for i > 1 and there is a single-mode response, 

1 - €T $=- -  cos x sin t ,  
PY 1 

which matches with the solution of (3.8) as K increases with h = O(1). To obtain a 
resonant response with 6 = O(1) we would need to replace h by 2/3e-$1~/.n+h; this 
would be equivalent to the case y1  = 0 and we shall assume y1 = 0 henceforth. 

(b) 71 = 0, 7.2 * 0 
In this case 6 is O(1) but conditions (4.6) imply that a, = b, = 0. It is still possible 

to write 4 = f ( t  - x) +At + x) as long as f satisfies the constraints 

Jrf(x) cos 2x dx = f(x) sin 2x dx = 0 1: 
and we can again proceed to the integrability condition for $2 and obtain (4.5). Now 
we can see that there is a solution of the form 

f ( t )  = A sin t ,  
with 
and 

where 

and this solution remains valid regardless of the values of yi for i > 2. 



214 

response as long as A is away from a narrow detuning band near 
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Thus the non-vanishing of ya has the dramatic effect of eliciting a single-mode 

h = ($/2n) 1 H(3) sin 23 dy. 

Chester (1993) analysed h(x) = k2cos4x in (3.6) and found a finite shock regime as 
K + 00, indicating that there will be an O( 1) range of h near h = 0 for which shocks exist 
when Q = O(&, and we hypothesize that in general the range of K in which there are 
shocks decreases as (T increases. As we shall see later we expect the shocks to have 
vanished completely by the time Q = O( 1). 

In addition, figure 3 indicates that there will be other ‘resonances’ of a Duffing type 
when ,8 = O(1). These are, however, not described by equation (4.5) since they do not 
lie within the detuning band where h = O(1). 

(c) y1 = y2 = ... = o,y, = O , Y N + l  * 0, Y N + 2  * 0 . . . Y Z N  * 0 
The above argument can be extended to cover this case but we will not present the 

details here; we merely note thatfmust satisfy the constraints 

r f ( x )  cos nx dx = f ( x )  sin nx dx = 0 

for all n for which y, 4 0 as well as satisfying (4.5). Then the fact that P, and Q, are 
unknown gives us enough flexibility to find bothflt) and P,, Q, for values of n for 
which y, + 0. We are able to find a response in the form of a linear combination of 
discrete modes with frequencies (1,2, ..., N )  except for narrow ranges of values of h 
where shock solutions are still possible. 

The picture that emerges is that in this parameter regime the response resembles that 
described for (T = O(&) when W(x) is even about $r (i.e. when yn = 0 for all n). As soon 
as this condition is not satisfied and yn is non-zero for n > N ,  we expect the solution 
to consist of a discrete mode response containing the first N frequencies except for 
small ‘detuning bands’ in the neighbourhood of which shocks may occur. These 
detuning bands occur along the extensions of the ‘fingers’ in the K-A diagram (figure 3) 
and are associated with Duffing-like responses for each non-zero y,. The amplitude of 
the resonance grows and the shock bands appear to decrease as (T increases in size. 

We note that for 1 % (T % O(&, complicated responses similar to these described 
above are likely to develop unless h(x) has a very special form. Indeed, h’(x) not only 
needs to be even itself but also needs to be such that H(x) is even in (0, x )  if we are to 
retain the Chester response when Q = O(6).  Then this process is exacerbated as Q 

increases through (T = O(d), O(&) etc, leading to progressively more and more 
restrictions on h(x) if we are to retain the Chester response to lowest order. 

4.2. IT = 0(1) and ht/L2 -4 6 
This is the regime where area variations are large enough to affect the linearized 
spectrum. When we write b(x) = crh’(x)/( 1 + ah(x)), 6 = #o + e$41 + . . . , we then need to 
solve the first-order problem 

902, + b(x) #oz - #ott = 0, (4.8 a) 

r 

with #oz = 0 at x = 0,n. The solutions of this problem take the form 

g(x) ( A  cos wt + B sin wt)  
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where 
g” + bg’ + wzg = 0, (4.8b) 

and our earlier work leads us to expect that only normal modes for which w is an 
integer will be excited by the forcing. Thus the response now depends on the number 
of normal frequencies commensurate with the forcing frequency. Guided by our earlier 
work we anticipate that the response will depend sensitively on the commensurability 
of the eigenfrequencies 0, with the forcing frequency and we sketch out the possible 
scenarios. 

(4 w 1 *  1 
Here we expect that 6 will have amplitude of O(&) and there will be no resonant 

amplification in this detuning band. 

(b) w1 = 1, w, + n, n > 1 
This case has been considered by Can & Askar (1990) and Ellermeier (1993). There 

is a single-mode response whose amplitude depends on h as in a Duffing equation. The 
possibility of shock solutions has now completely disappeared unlike (b) in $4.1 above. 

(c) w, = n for a finite number N of values of n 
Generalization of the work in (b) has been carried out by Peake (1993) for N = 2, 

and 3; he shows that the response consists of a finite system of N coupled Duffing- 
like algebraic equations for the amplitudes of the resonating modes, again with no 
possibility of shocks occurring. 

(d)  w, = n for all n 
There are well-established procedures for retrieving b(x) knowing the spectrum w, 

(see for example Barcilon 1983) and it is easy to show that one form of b(x) which gives 
w, = n is b = -2a/(owc+ 1) where a is constant. For this case, which is equivalent to 
1 +ah = (1 +ax)-2, Keller (1977) found that (4.8) has the general solution 

$,, = (1 +ax) ( G ( t  + X) + G ( t  - x)) + a(G(t - X )  - G(t + x)),  
where G is any 2~-periodic function which can be shown, on going to the second term 
in the expansion, to satisfy Chester’s equation. Thus shock solutions are still possible 
for u = O(1) when all the eigenfrequencies are integer multiples of the forcing 
frequency. It has not yet been established that this particular form of b(x) emerges as 
the limit of the sequence of constraints on h(x) that we discussed at the end of $4.1. 

Our conclusions from the above evidence are that if w, - n < O(&) for all n, there will 
be a shock regime whereas if w,--n >> O(&) for any n, there will be no shocks to first 
order. Geometrically this is equivalent to saying that for a < O(d) shocks are always 
possible but for CT 9 O(d) shocks will only occur if the geometric variations satisfy 
restrictions that become increasingly severe as a increases to O( 1). 

5. Conclusion 
We have attempted to present a theoretical framework to describe the general way 

in which the nonlinear response of nearly one-dimensional acoustic resonators changes 
as their area imperfections increase. Dissipation has been neglected throughout and its 
inclusion is clearly a topic for further research. 

The general picture is that while perfectly one-dimensional resonators always have 
a detuning band within which shock waves occur, increasing the imperfection beyond 
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a certain threshold level suppresses the shocks for all but a few special ‘tuned’ 
geometries. For u 4 O(& the response is the classical one of Chester (1964). For 
u - 8, there is a wide variety of behaviour depending on the resonator shape. Most 
geometries yield threshold values of as-4 beyond which shocks are not possible, but 
there are rare geometries where shocks can still occur for quite large values of c d .  For 
a $ E;, the situation becomes more and more intricate because, depending on the 
behaviour of certain Fourier coefficients, we may be confronted with a very difficult 
problem involving an infinite number of Fredholm alternatives. 

We can comment further that if a resonator has symmetries that enable the general 
linear symmetric response to be written down explicitly, we can, in principle, always 
make progress towards reducing the problem to that of an ordinary differential 
equation. In the previous Section, we have noted the problem posed by Keller, where 
area variation proportional to 1/( 1 +ax)’ permitted a response with shocks even 
though v = O(1). This happened because the (- 1)th dimensional symmetric wave 
equation is explicitly soluble in a form which is convenient for further manipulations 
and because all the natural frequencies are commensurate. Although other area 
imperfections leading to a (2n + 1)-dimensional wave equation can be solved explicitly, 
in particular the spherical annular geometry considered by Peake (1993), the natural 
frequencies are only commensurate with the forcing when n = 1 or - 1, so this remains 
a very special case. We also note that, for an organ pipe that is open to the atmosphere 
at one end, so that the pressure vanishes there, the spectrum consists of the odd integers 
and an analysis of (3.1) leads to a real functional differential equation for f (Chester 
1981). 

We remark that all our work has been based on the assumption that any shocks 
which occur must be weak enough not to affect the homentropy of the flow to the order 
we have been considering. Since our dimensionless velocities relative to the sound 
speed have been at most of O(&, any expansions we may use involving shock wave 
responses may not be valid to O(&. None of the expansions in this paper have needed 
terms of this order, but entropy changes have been considered in more detail by Keller 
(1976 b).  

Finally we note one intriguing open question concerning the unforced nonlinear 
oscillations of these resonators. For a finite-dimensional system such as Duffing’s 
equation, the free response can usually be deduced from the forced response by letting 
the forcing amplitude tend to zero ; in Duffing’s equation this yields the result that free 
oscillations with detuning of O(h) have amplitude of O(h4). However, to the order to 
which we have been working, the perfect organ pipe has no free modes in the presence 
of nonlinearity because the response to a forcing amplitude E is proportional to €4 no 
matter what the detuning h happens to be. Hence the presence of increasing 
geometrical imperfections, which tend to make the resonator behave more and more 
like a finite degree of freedom oscillator, may be crucial for a free response to be 
possible, but the few shapes for which shocks occur in the forced response may not be 
capable of sustaining such a free response even if u = O(1). 
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